\(\int x^{-1+3 n} (a+b x^n)^3 \, dx\) [2540]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 63 \[ \int x^{-1+3 n} \left (a+b x^n\right )^3 \, dx=\frac {a^3 x^{3 n}}{3 n}+\frac {3 a^2 b x^{4 n}}{4 n}+\frac {3 a b^2 x^{5 n}}{5 n}+\frac {b^3 x^{6 n}}{6 n} \]

[Out]

1/3*a^3*x^(3*n)/n+3/4*a^2*b*x^(4*n)/n+3/5*a*b^2*x^(5*n)/n+1/6*b^3*x^(6*n)/n

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {272, 45} \[ \int x^{-1+3 n} \left (a+b x^n\right )^3 \, dx=\frac {a^3 x^{3 n}}{3 n}+\frac {3 a^2 b x^{4 n}}{4 n}+\frac {3 a b^2 x^{5 n}}{5 n}+\frac {b^3 x^{6 n}}{6 n} \]

[In]

Int[x^(-1 + 3*n)*(a + b*x^n)^3,x]

[Out]

(a^3*x^(3*n))/(3*n) + (3*a^2*b*x^(4*n))/(4*n) + (3*a*b^2*x^(5*n))/(5*n) + (b^3*x^(6*n))/(6*n)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int x^2 (a+b x)^3 \, dx,x,x^n\right )}{n} \\ & = \frac {\text {Subst}\left (\int \left (a^3 x^2+3 a^2 b x^3+3 a b^2 x^4+b^3 x^5\right ) \, dx,x,x^n\right )}{n} \\ & = \frac {a^3 x^{3 n}}{3 n}+\frac {3 a^2 b x^{4 n}}{4 n}+\frac {3 a b^2 x^{5 n}}{5 n}+\frac {b^3 x^{6 n}}{6 n} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.76 \[ \int x^{-1+3 n} \left (a+b x^n\right )^3 \, dx=\frac {x^{3 n} \left (20 a^3+45 a^2 b x^n+36 a b^2 x^{2 n}+10 b^3 x^{3 n}\right )}{60 n} \]

[In]

Integrate[x^(-1 + 3*n)*(a + b*x^n)^3,x]

[Out]

(x^(3*n)*(20*a^3 + 45*a^2*b*x^n + 36*a*b^2*x^(2*n) + 10*b^3*x^(3*n)))/(60*n)

Maple [A] (verified)

Time = 3.68 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.89

method result size
risch \(\frac {a^{3} x^{3 n}}{3 n}+\frac {3 a^{2} b \,x^{4 n}}{4 n}+\frac {3 a \,b^{2} x^{5 n}}{5 n}+\frac {b^{3} x^{6 n}}{6 n}\) \(56\)
parallelrisch \(\frac {10 x \,x^{3 n} x^{-1+3 n} b^{3}+36 x \,x^{2 n} x^{-1+3 n} a \,b^{2}+45 x \,x^{n} x^{-1+3 n} a^{2} b +20 x \,x^{-1+3 n} a^{3}}{60 n}\) \(74\)

[In]

int(x^(-1+3*n)*(a+b*x^n)^3,x,method=_RETURNVERBOSE)

[Out]

1/6*b^3/n*(x^n)^6+3/5*a*b^2/n*(x^n)^5+3/4*a^2*b/n*(x^n)^4+1/3*a^3/n*(x^n)^3

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.76 \[ \int x^{-1+3 n} \left (a+b x^n\right )^3 \, dx=\frac {10 \, b^{3} x^{6 \, n} + 36 \, a b^{2} x^{5 \, n} + 45 \, a^{2} b x^{4 \, n} + 20 \, a^{3} x^{3 \, n}}{60 \, n} \]

[In]

integrate(x^(-1+3*n)*(a+b*x^n)^3,x, algorithm="fricas")

[Out]

1/60*(10*b^3*x^(6*n) + 36*a*b^2*x^(5*n) + 45*a^2*b*x^(4*n) + 20*a^3*x^(3*n))/n

Sympy [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.40 \[ \int x^{-1+3 n} \left (a+b x^n\right )^3 \, dx=\begin {cases} \frac {a^{3} x x^{3 n - 1}}{3 n} + \frac {3 a^{2} b x x^{n} x^{3 n - 1}}{4 n} + \frac {3 a b^{2} x x^{2 n} x^{3 n - 1}}{5 n} + \frac {b^{3} x x^{3 n} x^{3 n - 1}}{6 n} & \text {for}\: n \neq 0 \\\left (a + b\right )^{3} \log {\left (x \right )} & \text {otherwise} \end {cases} \]

[In]

integrate(x**(-1+3*n)*(a+b*x**n)**3,x)

[Out]

Piecewise((a**3*x*x**(3*n - 1)/(3*n) + 3*a**2*b*x*x**n*x**(3*n - 1)/(4*n) + 3*a*b**2*x*x**(2*n)*x**(3*n - 1)/(
5*n) + b**3*x*x**(3*n)*x**(3*n - 1)/(6*n), Ne(n, 0)), ((a + b)**3*log(x), True))

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.87 \[ \int x^{-1+3 n} \left (a+b x^n\right )^3 \, dx=\frac {b^{3} x^{6 \, n}}{6 \, n} + \frac {3 \, a b^{2} x^{5 \, n}}{5 \, n} + \frac {3 \, a^{2} b x^{4 \, n}}{4 \, n} + \frac {a^{3} x^{3 \, n}}{3 \, n} \]

[In]

integrate(x^(-1+3*n)*(a+b*x^n)^3,x, algorithm="maxima")

[Out]

1/6*b^3*x^(6*n)/n + 3/5*a*b^2*x^(5*n)/n + 3/4*a^2*b*x^(4*n)/n + 1/3*a^3*x^(3*n)/n

Giac [F]

\[ \int x^{-1+3 n} \left (a+b x^n\right )^3 \, dx=\int { {\left (b x^{n} + a\right )}^{3} x^{3 \, n - 1} \,d x } \]

[In]

integrate(x^(-1+3*n)*(a+b*x^n)^3,x, algorithm="giac")

[Out]

integrate((b*x^n + a)^3*x^(3*n - 1), x)

Mupad [B] (verification not implemented)

Time = 5.79 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.87 \[ \int x^{-1+3 n} \left (a+b x^n\right )^3 \, dx=\frac {a^3\,x^{3\,n}}{3\,n}+\frac {b^3\,x^{6\,n}}{6\,n}+\frac {3\,a^2\,b\,x^{4\,n}}{4\,n}+\frac {3\,a\,b^2\,x^{5\,n}}{5\,n} \]

[In]

int(x^(3*n - 1)*(a + b*x^n)^3,x)

[Out]

(a^3*x^(3*n))/(3*n) + (b^3*x^(6*n))/(6*n) + (3*a^2*b*x^(4*n))/(4*n) + (3*a*b^2*x^(5*n))/(5*n)